Study Notes Index (knowledge base structure)#
:construction: ONGOING CONSTRUCTION :construction:
1 Statistics#
1.1 General topics#
1.2 Survival analysis#
Cox regression
1.3 Bayesian Statistics#
1.4 Missing data and imputation methods#
1.5 Causal inference (Propensity score methods)#
1.5.1 Use of external control data in RCT#
1.6 Meta-analysis methods#
1.7 Regression methods#
1.10 Ordinal data#
1.xx Other topics#
Simulation: No. of flips it takes to get two consective same side
Simulation: Generate random number between 1 to 7 using a dice
2 Data Science & Machine Learning#
2.1 Data preprocessing pipeline#
2.1.1 Data manipulation#
Numpy
Pandas
SQL
Spreadsheets
2.2 ML methods#
Fundamental ML concepts
Data importation
Data manipulation (above)
Frame ML problem
EDA (including data visualization)
Implement ML models (below)
Optimize ML model
Feature selection/engineering
Improve model generalization (hyperparameter tuning, model validation, etc.)
ML model interpretation
2.2.1 Surpervised learning#
2.2.2 Unsupervised learning#
2.2.3 Deep learning#
2.2.4 Reinforcement learning#
2.2.5 NLP#
2.2.6 Recommendation systems#
2.3 Data visualization#
2.4 Analytical tools#
2.4.1 R#
2.4.2 Python#
Udemy: Python for Data Science and Machine Learning Bootcamp
Scikit-learn
Tensorflow/Keras
PyTorch